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SUMMARY 

This paper presents a numerical solution of the transport equation for heat and species in complex three- 
dimensional spaces. The solution domain of the equation is transformed into a cube, as also is the governing 
equation; the resultant equation is solved in the transformed space via a finite difference technique. The 
validity of the developed computer code is tested by predicting test cases for which either analytical or reliable 
experimental results exist. Results are also presented for the rate of convergence of the method and the 
computer storage requirements, from which the validity, the flexibility and the economy of the developed 
method are proved for flows in real three-dimensional complex terrains. 

INTRODUCTION 

The effect of topography on the mean wind speed and the structure of the atmosphere adjacent to 
the ground is of primary importance in cases concerned with the siting of wind generators and tall 
buildings, the dispersion of air contaminants emitted from stacks, etc. 

The development of fast digital computers has made possible the numerical calculation of such 
geophysical flows, something that complements experimental results. One of the special feature of 
the numerical methods that have been developed to solve such problems is the way irregular 
boundaries are modelled, because generally irregular boundaries do not coincide with the co- 
ordinate lines. There are three alternative ways of tackling this problem. 

One method is to lay out a simple mesh (i.e. Cartesian) to cover both the computational space 
and the boundary; where the boundaries do not coincide with the grid lines, interpolation is used to 
apply the boundary conditions' or the real topography is approximated by a series of blocks (if we 
use a Cartesian mesh).2 Such an approach is bound to introduce errors into the solution, because of 
the inaccurate application of the boundary conditions. 

The second alternative is to use an orthogonal grid fitted to the boundaries. This is a very 
attractive method, but the generation of such a grid in three dimensions is extremely difficult. 

The third avenue of approach is the use of a non-orthogonal grid so that the co-ordinate lines 
coincide with the boundaries. Then a transformation of the co-ordinate system transforms the 
irregular domain to a unit cube,3 and the governing equations are solved in the transformed 

The disadvantage of this approach is that the equations under the co-ordinate 
transformation become more complicated than their Cartesian analogues, and as a consequence 
the computer code becomes more complex. Nevertheless the main advantage of this approach is 
the regular boundaries, which imply that the boundary conditions can be imposed accurately and 

0271-2091/87/040319-17sO8.50 
0 1987 by John Wiley & Sons, Ltd. Received 30 July 1986 



320 J. GLEKAS, G. BERGELES AND N. ATHANASSIADIS 

without difficulties. Moreover under the transformation the grid in the computational space can be 
uniform, whereas in the physical space the grid lines can be gathered to locations of great gradients. 

Gal-Chen and Somerville6*' adopted this method with the transformed momentum equations 
written in non-conservative form; however it can be shown' that the transformed equations can be 
written in strong conservation form, and this form of the equations was adopted in the present 
study. 

The present paper proposes a general finite volume algorithm for three-dimensional elliptic 
flows. The applications that are presented here are concerned with the solution of the temperature 
(or concentration) equation. First the theoretical background of the model will be presented and 
then the discretization of the equations. Finally, several preliminary test cases will be presented, 
followed by the presentation of a practical application which will demonstrate the efficiency of the 
code. 

ANALYTICAL EQUATIONS O F  THE MODEL 

For general three-dimensional flows, let (xl, x,, x3) be Cartesian co-ordinates, and (X,, X , ,  X 3 )  
generalized curvilinear co-ordinates: 

X i  = X i ( x l ,  x,, x 3 ,  t),  i = 1,2,3. (1) 
Instead of formulating the equations in the curvilinear co-ordinates, by expressing the vector 

and tensors in the local we adopt a different but also general method, which leads to 
simpler calculations; making a co-ordinate transformation on the Navier-Stokes equations 
written in the physical space in any convenient co-ordinate system (e.g. Cartesian, spherical), the 
corresponding equations in the transformed space can be easily obtained in their strong 
conservation law form.' 

From the Navier-Stokes equations in Cartesian co-ordinates: 

(2) 
au a F .  aRi  -+2=- 
at axi ax,' 

where the summation convention has been used, the transformed equations can be obtained: 

where 

U =  

-+>=-, afr a F .  aR, 
aT ax, ax, 

, F,=Uu,+p  

dij is Kronecker's symbol, E = e + (ut  + u: + u:)/2 and 

Also 
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( 5 )  
-  ax, 

9 a x j  R.=-- 

and z i j ,  q, are transformed as 

) 
ax, au, ax, aui z..=A--&.+ --+--- p 

'J ax, ax, I J  axj ax, a x ,  ax, 
ax, ae 

q,= -(y/Pr)p--. 
a x ,  ax, 

( ax, auk 

At this stage we consider the steady-state problem, so we ignore the time derivatives in the above 
equations. The above equations (3) can be cast in the convenient form 

div (pU@) = div (r, grad @) + S ,  (6) 
or 

where @ is any variable u, u, T ,  p ,  . . . , etc., J = 9- ' is the Jacobian of the transformation, U ,  are the 
contravariant components of the velocity and a, are parameters depending on the co-ordinate 
transformation. Confining ourselves to the temperature equation, equation (7) can be written 
explicitly as 

The terms S,, A , & .  . . , I are defined in Table I. 
The velocity field can be obtained, as far as geophysical flows are concerned, from mass 

consistent models. The next step of the study will be its extension to the whole problem, i.e. to the 
solution of the flow field (u, u, w velocities) in conjunction with the temperature equation. 

DISCRETIZATION OF THE EQUATION 

Under the transformation (l), the physical space R (Figure l), is transformed to the unit cube D in 
the transformed space. The governing equation (8) is solved in the transformed space where the 
grid is uniform. The solution domain is divided into volumes such as are shown in Figure 1, and 
the well known staggered mesh configuration introduced by Harlow and Welch' ' is adopted for 
the location of the velocities and scalar quantities. 

The temperature equation (8) is integrated over the control volume AV, obtaining the algebraic 
equation 

ApTp = AN 7'' + AsTs + A ,  T E  + A ,  Tw + A" T" + A D T D  + S,, (9) 
where S ,  is the source term. 

(Figure 1 (b)). 
The notations E, W, N, S, U and D stand for the grid nodes surrounding the central grid node P 



t

V 

Table I 

( 0 )  

Figure 1 (a). Physical/transformed space 

( b )  

Figure 1 (b). Typical computational cell 



NUMERICAL SOLUTION OF THE TRANSPORT EQUATION 323 

The fact that the numerical grid is Cartesian in the solution domain may be masking a problem 
when imposing Neumann boundary conditions. This problem can be removed either by using a 
grid that has the grid lines in the physical space normal to the boundaries" or by expressing the 
directional derivatives in the direction normal to the boundaries by the directional derivatives in 
the grid line  direction^.'^ It is obvious that, although the latter method needs only trivial 
calculations to be applied, the former one is more promising. Our intention is to use the former 
method, but for the application presented here we used the second one. 

SOLUTION PROCEDURE 

Assuming that the velocity field is known, the algebraic equations (9) are solved with an AD1 
method, giving the temperature field over the whole domain, under the prescribed boundary 
conditions. 

TEST CASES-VERIFICATION OF THE CODE 

Before applying the code to practical applications such as the prediction of the temperature or 
concentration fields from a point source in the vicinity of a two-dimensional hill, the code was 
tested in predicting simple flow patterns for which analytical solutions existed. 

Test 1 -Temperature field from a point source in a uniform parallel flow 

In the first test we calculated the diffusion from a point source in a uniform parallel flow. We also 
considered the special case of pure diffusion from the source where there is no wind blowing. 

The main objective of this test was to check the advection and diffusion terms separately. 
Figure 2(a) is a definition sketch for this test. The flow was in the X, direction, and the grid 

The temperature of the surrounding air was 288 "C and that of the source was 700 "C. 
In Figures 2(b) and (c) the temperature distribution at various locations downwind of the source 

is presented. The temperature distribution is shown at two levels, i.e. (X,,X,) and (Xl,X3),  
indicating the Gaussian distribution of the temperature far away from the source (Figure 2(d)). 

In the case of pure diffusion, where there is no wind, the point source was located at the 
geometrical centre of the physical space. As was expected, the temperature distribution was 
symmetrical about the point source. 

The results of both the above cases were compared with the results obtained for the same 
problem from the application of the TEACH code, developed at  Imperial College;14 no difference 
was apparent between the two sets of results (Figures 2(b), 2(c)). 

11 x 1 1 x 20, where the 20 grid nodes are in the velocity direction (X3). 

t X 2  

Figure 2(a). Test 1-solution domain 
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Figure 2(b). Test 1-temperature distribution in (X,X,) plane: 0 0.0 + 0.8; 0 1.2; 0 1.6; H 1.8; A TEACH 
code (complete agreement) 
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Figure 2(c). Test I-temperature distribution in (X,X,) plane: 0 0.0; + 0.8; 0 1.2; 0 1.6; 1.8; A TEACH code 
(complete agreement) 
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CALCULATED TEMPERATURE 
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DISTRIBUTION AT - % J = l . S  v 
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Figure 2(d). Test 1 -Gaussian distribution of temperature: Gaussian distribution; ---- calculated 
temperature distribution at ( X J V )  U = 1.8 

Figure 3. Test 2-physical and transformed spaces 

Test 2-  Temperature distribution in a convergent two-dimensional channel 

dimensional motion of a non-viscous fluid in a convergent channel with flat walls. 
In Figure 3, the geometrical configuration of this test is sketched. We considered the two- 

A sink was located at the origin 0 and the velocity field was obtained from the equation 

C = - Q/2xr,  (10) 

where Q is the intensity of the source and r the distance from the origin 0. 
Using the transformation 

r - r,, 9-9, 
X ,  =- , -x2=-, 

r A  - r D  9B - 9A 

the convergent channel was transformed to a unit square (0 d X ,  d 1,0 d X ,  < 1). 
Along the line CD ( r = r D  and 9=9,-9,), we imposed a linear temperature variation 

( T ,  = 300 "C, TB = 400 "C), and selecting the Peclet number Pe (representing convection/diffusion) 
to be much greater than 1 (Pe  >> l), we calculated the temperature distribution in the convergent 
channel. The lines of equal temperature coincided with the streamlines. 
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Test 3-mass and temperature source in parallel flow 

The third test considered the two-dimensional case of a mass source in a parallel flow.15 
Together with the mass source, a temperature source was located at  the same point. Selecting the 
Peclet number to be much greater than 1, we calculated the temperature distribution. As before 
(test 2), the lines of equal temperature represent the streamlines, because the diffusion term is 
negligible compared with the convection term. 

In Figure 4(a), the geometrical configuration of the test is sketched. The grid was 15 x 15. 
From the calculated temperature distribution, the temperature gradient was obtained and 

compared with the velocity gradient. The comparison is shown in Figure 4(b). The differences 
between the temperature and velocity gradients were very small and are attributed to the 
coarseness of the numerical grid. 

Test 4-parallel flow past a sphere (very slow motion) 

The fourth test considered the temperature distribution in the vicinity of a sphere placed in 
parallel flow with Reynolds number Re << 1. This is a case of creeping motion, and the oldest 
solution for the velocity field was given by Stokes.16 

In Figure 5, the physical and transformed spaces are sketched. The transformation of the co- 
ordinates is 

r - - (x: + x; + x;)"2 - r1 
[ O G X ,  G 11, x, =- - 9 

12 - rl r2 - r l  

( 0 )  

Figure 4(a). Test 3-flow field sketch 

( b )  

Figure 4(b). Test 3-lines of constant temperature 
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t X 2  

Figure 5. Test 4-physical and transformed spaces 

[ 0 d X 2 6 1 ] ,  x2=- - 9 (12) 

[O$X,<l], x 3 = -  - 

(P - (p3 - arctan [x2/(xf + x:)"~] - 'p3 

(P4 - (P3 (P4 - (P3 

9 - 9, - arctan(x,/x,) - 9, 
94 - 9 3  94 - 9 3  

The flow is parallel in the x3 direction; then the distributions of the Cartesian components of the 
velocity, u,u and w, and of the pressure, are given by the equations 

An important characteristic of the creeping motion is that the pressure field satisfies the potential 
equation 

div grad ( p )  = A(p) = 0, (17) 
an equation which is satisfied by the temperature too. 

when the temperature distribution on the sphere is identical to that of the pressure, i.e. 
Thus, the fourth test is concerned with the temperature distribution in the vicinity of the sphere, 

The Reynolds number was 0.14. The calculated temperature distribution was compared with 
the analytical solution, given by the equation 
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In Figure 6(a) the temperature distribution around the sphere is presented, for three different 
numerical grids. In Table I1 the differences between the analytical solution and the computed 
values are given for the three grids. It is obvious that near the sphere, where the temperature 
gradients are very steep, the finest grid (30 x 7 x 13 nodes), gives the better results, in close 
agreement to the analytical solution (error less than 1 per cent). In Figure 6(b) the rates of 
convergence for the three different grids are presented. It is apparent that for the finest grid 
(30 x 7 x 13 nodes), the number of iterations was increased compared with that for the coarser 
grids. 

For the same geometrical configuration, the case of pure diffusion was also considered. The 
temperature of the sphere was taken as 100°C, and the temperature at the outer boundary of the 
physical space (which was located 10 radii of the sphere away from the sphere), was taken as 20 "C. 

In Figure 7 the computed temperature distribution is compared with the analytical solution 
(T  = - Cl(l/r) + C,, where the constants C, and C, are obtained from the boundary conditions, 
i.e. for r = r l ,  T = T ,  and for r = r,, T = T,), for the three different grids. Again, near the sphere 
where the temperature gradients are steep, the finest grid (30 x 7 x 13 nodes), gave the better 
results (error less than 0.5 per cent). 

PRACTICAL APPLICATION 

The algorithm was used to calculate the concentration field from a point source in a hilly terrain, 
and the results were compared with the experimental data of the Joint Soviet-American hill study 
programme of the Environmental Protection Agency at RTP.' 

The velocity field which was used as input to our code was from the experimental data, and the 
results concerned different stack heights and source locations, relative to the hill. The hill shape was 
two-dimensional (Figure 8), with the following parametric equations: 

A T-T, 
Theoretical So I u ti 0 n 

A GRID 8.7.13 

rn GRID 15.7.13 I\ 

1 .o 11 0 GRID 30.7-13 

1. 2.  3. 4 
Figure 6(a). Test 4-temperature distribution around a sphere in parallel uniform flow: - theoretical solution; 

A grid 8 x 7 x 13; W grid 15 x 7 x 13; 0 grid 30 x 7 x 13 
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Table I1 

x3 ( T -  T , ) R / ( p / P r ) U ,  Calculated 

1.000 
1.054 
1.161 
1.268 
1.375 
1.482 
1.590 
1.697 
1.804 
1.911 
2.018 
2.125 
2.230 
2.340 
2.446 
2.554 
2.660 
2.767 
2.875 
2.982 
3.089 
3.196 
3.304 
3.410 
3.510 
3.625 
3.730 
3.840 
3.950 
4.000 

- 1.500 
- 1.350 
- 1.1 13 
- 0.933 
- 0794 
- 0.683 
- 0'594 
- 0.521 
- 0461 
- 0.41 1 
- 0.368 
- 0.332 
- 0.300 
- 0.274 
- 0.25 1 
- 0.230 
- 0.212 
- 0.196 
- 0'182 
- 0.169 
- 0.157 
- 0.147 
- 0137 
- 0.129 
- 0.122 
-0114 
- 0.108 
- 0.102 
- 0'096 
- 0.094 

- 1.500 
- 1.310 
- 1.099 
- 0.927 
- 0.789 
- 0.680 
- 0.586 
- 0.520 
- 0.458 
- 0.410 
- 0.365 
- 0.330 
- 0'297 
- 0.271 
- 0.25 1 
- 0.229 
- 0.212 
- 0.195 
- 0.180 
- 0.168 
- 0.157 
- 0146 
- 0.137 
- 0.129 
- 0.122 
- 0.1 14 
- 0.108 
- 0.102 
- 0096 
- 0.094 

10 20 30 40 50 60 
No. of i terat ions 

Figure 6(b). Test 4-convergence rates for the three grids 
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- A n a l y t i c a l  S o l  u t  i on t 
A GRID 8 . 7 . 1 3  

G R I D  15.7.13 

OJ 0.2 03 04 0.5 06 

Figure 7. Diffusion/temperature distribution: ~ analytical solution; A grid 8 x 7 x 13; 0 grid 15 x 7 x 13; 
0 grid 30 x 7 x 13 
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Figure 8. The RTP two-dimensional hill 

if < a 

if a 

x1 =tsign(t){151 +mJ(5’-a2)+a2C14I +mJ(5’-a2)I-’}, (21) 
x2 = 0, 

where rn = (h,/a) + J[(ho/a2 + 11, h, is the height of the hill, a is the half-width of the hill, 
5 is an arbitrary parameter, x1 is directed along the approaching flow direction and x2 is 
directed vertically upwards. 

The applied co-ordinate transformation was 

X x -2, 0 6 X l d 1 ,  
l -  L 
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where L is the maximum distance in the x1 direction, s (x l )  is the ground elevation (a function of x l )  
and H is the vertical height of the physical space, (Figure 9). 

For calculating pollutant concentrations using the solution of the diffusion equation in its 
parabolic form, it is neccessary to determine the vertical diffusivity K ,  (as well as the lateral 
diffusivity K ,  in the case of three-dimensional motion). We assume that the diffusion in the 
streamwise direction is negligible compared to advection. 

The vertical diffusivity was calculated from the relations suggested by Berlyand and 
Genikhovich:" 

K ,  = kU,(x, + z,), 

K, = kU,(h + z,), 

when 

when x, - s(xl)  2 h, 
x2 - s(xl)  < h, 

where U ,  is the friction velocity, zo is the roughness length, h is the surface layer height and k is von 
Karman's constant (= 0.4). 

Values of U,, zo and h were determined in accordance with wind tunnel measurements." 
For the boundary condition on the ground (i.e. K,(aC/ari) = 0), special care was taken for the 

normal derivative aC/& because the co-ordinate lines x1 and x, are not orthogonal. The normal 
derivative can be expressed in terms of directional derivatives 

where s (xI)  is the ground elevation, C is the concentration and 
ordinate line. 

is the normal to the X ,  co- 

The grid was 17 x 20, with 17 nodes in the x1 direction and with 20 nodes in the x2 direction. 
The code was tested for a hill with aspect ratio n = (a/h,) = 8 (smooth hill, with maximum slope 

10 "), and for stacks located at the upwind base, the top and the downwind base of the hill, and for 
three different stack heights, i.e. H ,  = h,/4, h,/2, h,. 

The results for the values and positions of maximum surface concentrations, were compared 
with the experimental data, as well as with the calculations of two numerical models (QPM and 
WMDM models) used in Reference 18 (Figures 10-14). 

Figure 10 shows that the surface concentrations predicted by the present method, when the 
stack is located upwind of the hill, are very close to the measured values, as well as to the 
predictions of the QPM model used in Reference 18. 

The same conclusion is apparent from Figure 1 1 ,  where the stack is located at the top of the hill; 

-I 

Figure 9. Numerical grid in the physical space 
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Figure 10. Comparison of surface concentrations predicted by QPM, the present method and experimental data; hill 8; 
H, = h,/2; upwind base stack location 
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0 Expcr i men tal 

1 I I 
I l i  

Figure 1 1 .  Comparison of surface concentrations predicted by QPM, the present method and the experimental data; hill 8; 
H, = h& top of the hill stack location 

the results of the present method are, however, in slightly better agreement with the experimental 
data than the results of the QPM model. 

Figure 12 shows that the calculated position and value of maximum concentration is very close 
to the measured one, for the three stack heights (h0/4, ho/2, ho). Comparing the results with those of 
the WMDM numerical model, the present method gives much better results for stack height 
H ,  = h0/4, whereas for H ,  = h,/2 and h, the two codes give similar results. 

In Figure 13 surface concentrations predicted by the QPM model, the present method and 
experimental data, are compared. The stack is located downwind of the hill. Again the present 
method gives results closer to the experimental data than the QPM model. 

Figure 14 shows again that when the source is located at the downwind base of the hill, the 
present results are very close to the experimental results, whereas the WMDM code is not, 
specially for H ,  = h0/4 and H ,  = ho/2. 

In Figure 15 is presented the rate of convergence of the code, for the various cases to which it was 
applied. The case when the stack is located downwind of the hill has the highest rate of 
convergence; this is due to the parabolicity of the species field. 
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Present Method 
WMDM Model 

A Experi ment.4 

D{ 

,001 . , , , . , . .  , 
10 100 

Hs (mm) 

Figure 12. Comparison of distances to location of maximum surface concentration predicted by WMDM, the present 
method and experimental data; hill 8; top of the hill stack location 

- Present method 
QPM Method 

Ex per i mentat 

0.1 1 .  10. I 

XI' max 

)O. 

Figure 13. Comparison of surface concentrations predicted by QPM, the present method and experimental data; hill 8; 
H, = h,/2; downwind stack location 

CONCLUSIONS 

The present paper has presented the basic features of a method for solving three-dimensional 
elliptic flow equations. The main feature of the method is its capability to work without difficulty 
with complicated geometries, because the method transforms the complex physical space to a unit 
cube, in which the governing equations are solved. 

In this paper applications which were concerned with the energy and concentration equations 
have been presented. 

The velocity field was taken either from analytical relations (where they were available) or from 
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- Present Method 
’ WMDM Model 

1 A Experimental Data 
/ 
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Figure 14. Comparison of distances to location of maximum surface concentration predicted by WMDM, the present 
method and experimental data; hill 8; downwind base stack location 

NO. i terat ions 

Figure 15. Convergence rates for the three cases considered 

experimental data. In all the cases to which the method was applied, the results were close to the 
analytical solutions or the experimental data, something that demonstrates the reliability of the 
code. 

The next step will be the extension of the code to solve the momentum equations in conjunction 
with the energy/concentration solver. 

NOMENCLATURE 

a Half-width of the hill 
A , .  . . , I  
e internal energy 
ho Height of the hill 
h Surface layer height 
J Jacobian of the transformation 
k von Karman’s constant 

Transformation coefficients 
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Vertical diffusivity 
pressure 
Peclet number 
Prandtl number 
Intensity of the point source 
Ground elevation 
Cartesian components of the velocity 
Contravariant components of the velocity 
Friction velocity 
Cartesian co-ordinates 
Generalized curvilinear co-ordinates 
Roughness length 
Transformation parameters 
ideal gas gamma 
Diffusion coefficient for variable 0 
coefficient of viscous traction 
Molecular viscosity 
Kinematic viscosity 
Arbitrary parameter 
Stress tensor 
J - ’  
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